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SETAC Technical Workshop  
“Guidance on Passive Sampling Methods to Improve Management of Contaminated Sediments”  
November 2012 
 

“Peer-reviewed publications of more case study examples where PSMs 
have been used in site assessments and management decisions”  

(Ghosh et al., 2014) 

“Further development of the non-equilibrium PSMs in the field and 
further validation of PRC use in static sediment environments” 

(Ghosh et al., 2014)	
  

QA/QC strategies to correct for key interferences  
(i.e. evaporative loss and DOM)  

Research Drivers 
 

Routine use in the field as an in-situ technology for 
evaluating remedial performance  



Water Column 

Sediment Cap 

Modified Henry 
Sampler containing 
PDMS Rod 

THE BIG PICTURE 
Can we accurately quantify ​𝐶↓𝑓𝑟𝑒𝑒   using PSMs?  

And use the information to make assessments concerning remediation 
goals? 

z 
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The Importance of ​𝐶↓𝑓𝑟𝑒𝑒  
Aqueous concentration of chemicals not bound to particulate matter, colloids, or 

dissolved organic carbon 
•  Proportional to chemical activity (Reichenberg and Mayer, 2009) 
•  Better indicator of potential risk 
•  Direct assessor of:  

–  fate & transport of contaminants between sediment porewater and surface 
water 

–  bioavailability & toxicity of contaminants to benthic organisms (Lu et al., 
2011) 

•  Sediment Quality Guidelines (SQGs) derived using Equilibrium Partitioning 

(EqP) Theory estimate ​𝐶↓𝑓𝑟𝑒𝑒  from ​𝐶↓𝑡𝑜𝑡𝑎𝑙  (bulk solids) and 

assumed partitioning to water ( ​𝐾↓𝑑 ) (Mayer et al., 2014) 
–  Misrepresentation of risk 

–  Passive sampling methods accurately determine ​𝐂↓𝐟𝐫𝐞𝐞    



 Passive Sampling Methods 
Ex-situ 
•  Best to understand ​𝐶↓𝑓𝑟𝑒𝑒   

equilibrium condition  
–  Partitioning  
–  Toxicity 
–  Bioaccumulation  

•  Reproducibility & typical 
experiment control  

In-situ 
•  Best to understand ​𝐶↓𝑓𝑟𝑒𝑒   

field condition 
–  Groundwater intrusion 
–  Currents 
–  Gradients & flux 
–  Bioturbation 
 

Sources: 
Jahnke et al., 2012 
Huckins et al., 2002 
Reible and Lotufo, 2012 
Gschwend et al., 2012 
Oen et al., 2011 



•  Polyethylene (PE) 
•  Thin rectangular sheets- High volume, good surface area to 

volume ratio, moderate internal diffusion rates, marginal in situ 
feasibility  

 
•  Polyoxymethylene (POM) 
•  Molded thermoplastic- High volume, fair surface area to 

volume ratio, slow internal diffusion rates, marginal in situ 
feasibility  

 
•  Polydimethylsiloxane (PDMS) 

•  Thin coating on glass fibers- Moderate volume, good surface 
area to volume ratio, high internal diffusion rates, good in situ 
feasibility 

•  Hydrophobic surface after crosslinked and polymerized 
•  Potential to absorb hydrophobic contaminants  

Common Passive Sampling Materials for HOCs 

Images from USEPA, 2012 



​𝑪↓𝒇𝒓𝒆𝒆  
​𝑪↓𝒑𝒐𝒍𝒚𝒎𝒆𝒓 	
  

​𝐴𝑡  𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚:  𝐶↓𝑓𝑟𝑒𝑒 =   ​​𝐶↓𝑝𝑜𝑙𝑦𝑚𝑒𝑟 /​𝐾↓𝑝𝑤  	
  
	
  
​𝑁𝑜𝑛−𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚:  𝐶↓𝑓𝑟𝑒𝑒 =   ​​𝐶↓𝑝𝑜𝑙𝑦𝑚𝑒𝑟 /​​𝑓↓𝑠𝑠 
𝐾↓𝑝𝑤  	
  



Transport within the PSM (DRM & IRM) 

 ​𝜕​𝐶↓𝑃𝑆𝐷 /𝜕𝑡 =   ​𝐷↓𝑃𝑆𝐷 ​​𝜕↑2 ​𝐶↓𝑃𝑆𝐷 /​𝜕𝑥↑2   
Transport to the PSM from the sediment (DRM & ERM) 

 𝑅​𝜕𝐶/𝜕𝑡 =𝐷​​𝜕↑2 𝐶/𝜕​𝑥↑2   
 

 
 

 

Modeling Contaminant Uptake: Governing Equations  

Internal Resistance Model (Huckins et al., 2006) 

–  transport to PSM from sediment is ignored: ​𝑪↓𝑷𝑺𝑫 (𝒙=𝑳)=   ​𝑲↓𝑷𝑺𝑫 𝑪  
–  Exact solution from analogous heat transport problem (Carslaw and Jaeger, 1959) 

–  For t > ​𝑡↓𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 ≈​0.848 ​𝐿↑2 /​𝐷↓𝑃𝑆𝐷  , transport resistance externally 
dominated  

–  PSM sorbent thicknesses have decreased causing mass transport resistances to be controlled 
external to the PSM 

 
 

 

Dual Resistance Model (Fernandez et al., 2009) 
–  Diffusion-based internal & external transport  
–  Semi-exact solution using numerical inversion of the LaPlace transform 
–  Bulky & often can be simplified 

 
 

 

External Resistance Model (Lampert et al., in review)  
–  Exact solution from analogous heat transport problem (Carslaw and Jaeger, 1959) 
–  Single unknown parameter RD which is a function of the transport and sorption-related 

retardation in the surrounding porous media 

 
 

 



Relative Importance of Internal & External Transport 

 ​​𝑡↓𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 /​𝑡↓𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  =   ​36.1 ​​𝐾↑2 ↓𝑃𝑆𝐷↑ ​
𝐷↓𝑃𝑆𝐷 /𝑅𝐷 =36.1𝜎 

 
 



 
 
for  30 µm PDMS layer  
 

τ = 

-log 
  t = 0.5 hour t = 1 day t = 7 days 

NAP 9.95 225 11000 75400 
DB(a,h)A 11.35 9 430 3000 

Off the plot! 
 

DRM & ERM 
are converged  
@ t = 0.5 hr! 

​𝝉↓𝑫𝑩(𝒂,𝒉)𝑨  
t= 0.5 hr 

​𝝉↓𝑵𝑨𝑷  
t = 0.5 hr 

​​𝑡↓𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 /​𝑡↓𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  =   ​36.1 ​​𝐾↑2 ↓𝑃𝑆𝐷↑ ​𝐷↓𝑃𝑆𝐷 /𝑅𝐷 =36.1𝜎 



 
 
for  30 µm PE sheet  
 

τ = 
-log 

  t = 0.5 hour t = 1 day t = 7 days 
NAP 11.76 3.5 170 1170 
DB(a,h)A 15.5 0.001 0.03 0.2 

Slower kinetics  

​𝝉↓𝑫𝑩(𝒂,𝒉)𝑨  
t = 0.5 hr 

​𝝉↓𝑵𝑨𝑷  
t = 0.5 hr 



% error when neglecting internal mass 
resistance  

​𝝉↓𝑫𝑩(𝒂,𝒉)𝑨  (PDMS) 
t= 0.5 hr 

​𝝉↓𝑫𝑩(𝒂,𝒉)𝑨  (PE) 
t= 7 days 

​𝝉↓𝑫𝑩(𝒂,𝒉)𝑨  (PE) 
t= 1 days 

​𝝉↓𝑫𝑩(𝒂,𝒉)𝑨  (PE) 
t= 0.5 hr 

DRM necessary when using PE 

But we have a 

simple & still robust solution for PDMS using ERM 

​𝐶↓𝑃𝐷𝑀𝑆 (𝑡)=   ​​𝐾↓𝑃𝐷𝑀𝑆−𝑤 𝐶↓𝑝𝑤 [1− ​exp⁠(​𝑅𝐷𝑡/​𝐿↑2 ​𝐾↓𝑓𝑤↑2  ) ​erfc⁠(​√⁠𝑅𝐷𝑡 /𝐿​𝐾↓𝑓𝑤  ) ] 
 



Modeling Contaminant Uptake 
​𝐶↓𝑡=7  𝑑𝑎𝑦𝑠   𝑣   ​𝐶↓𝑡=30  𝑑𝑎𝑦𝑠 	
  

​𝐶↓​1060∕1000 µμ𝑚   𝑣   ​𝐶↓​230∕210µμ𝑚  	
  

𝑃𝑅𝐶𝑠	
  
RD = β ​​𝐾↓𝑜𝑤 ↓↑𝛼  

Internal Resistance Model 
Dual Resistance Model 

External Resistance Model 
 
 

​𝑓↓𝑠𝑠 =  [1− ​exp⁠(​𝑹𝑫𝑡/​𝐿↑2 ​𝐾↓𝑓𝑤↑2  ) ​erfc⁠(​
√⁠𝑹𝑫𝑡 /𝐿​𝐾↓𝑓𝑤  ) ] 

Absolute Porewater Concentrations 
​𝐶↓𝑓𝑟𝑒𝑒 =   ​​𝐶↓𝑃𝑆𝑀 /​𝐾↓𝑓𝑤 ​𝑓↓𝑠𝑠   

Comparable to Environmental Criteria 

Magnitude of Diffusive Flux 

𝑅​𝜕​𝐶↓𝑝𝑤 /𝜕𝑡    = 𝐷​​𝜕↑2 ​
𝐶↓𝑝𝑤 /𝜕​𝑧↑2   

 

𝐽=− ​𝑹𝑫/​ρ↓𝑏 ​𝑓↓𝑜𝑐 ​
𝐾↓𝑜𝑐  ​𝑑𝐶/𝑑𝑧  

Or for highly hydrophobic contaminants,  

 𝐽=− ​𝑅𝐷/​ρ↓𝑏 ​𝑓↓𝑜𝑐 ​
𝐾↓𝑜𝑐  (1+ ​𝐶↓𝐷𝑂𝐶 ​
𝐾↓𝐷𝑂𝐶 ) ​𝑑𝐶/𝑑𝑧  

 
 



​𝑪↓𝒇𝒓𝒆𝒆  
​𝑪↓𝒑𝒐𝒍𝒚𝒎𝒆𝒓 	
  

​𝐴𝑡  𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚:  𝐶↓𝑓𝑟𝑒𝑒 =   ​​𝐶↓𝑝𝑜𝑙𝑦𝑚𝑒𝑟 /​𝐾↓𝑝𝑤  	
  
	
  
​𝑁𝑜𝑛−𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚:  𝐶↓𝑓𝑟𝑒𝑒 =   ​​𝐶↓𝑝𝑜𝑙𝑦𝑚𝑒𝑟 /​​𝑓↓𝑠𝑠 
𝐾↓𝑝𝑤  	
  

​𝑪↓𝒇𝒓𝒆𝒆  

Remediation Evaluation  
Vertical Profiles, Comparison with 

WQC, Comparison with Surface Water 

Toxicity & Bioaccumulation 

Fate & Transport 
Chemical Activity 

Migration Potential, Flux 



Passive Sampling for  
Performance Assessment 

•  Provides measure of the reduction of availability and 
transport in in-situ treatments and sediment caps 

•  Potentially provides indication of migration deep within 
cap 

•  Moves away from typical performance evaluations based 
upon implementation metrics and physical characteristics 
not focused on exposure and risk 

•  Overcomes problems of bulk solid measurement 
–  Conventional sand caps do not sorb contaminants 
–  Caps (or in-situ treatments) work by sorbing contaminants and reducing 

availability 
–  In either case, bulk solids largely irrelevant 



Demonstration of in situ SPME PDMS methods for 
monitoring remediation efforts 

Materials & Methods 

•  Modified Henry Sampler  
 
•  PDMS sorbent fiber 

Selective for non-polar compounds 
≤ ng/L detection with 1 cm resolution  

 

 

   Cap Layer 

  Contaminated  
Sediment 

Water Column 

Large	
  shielded	
  sampler-­‐ 36” Small	
  unshielded	
  sampler-­‐ 14”

10	
  µm	
  PDMS
210	
  µm	
  core



West Branch Grand Calumet River & 
Roxana Marsh 
•  COCs: PAHs, PCBs, pesticides & metals 
•  Remediation Activities: Sediment removal (~235,000 cu. yds 

in WBGCR and ~150,000 cu. yds in Roxana Marsh) & 
capping with sand/gravel  

•  Monitoring Activities: SPME porewater/surface water 
sampling & sediment cores (EPA) 

“…appears picturesque, but the river sediment is highly 
contaminated.” (USEPA, 2009) 



Expected Profiles  
Clean cap layer (low concentrations), sharp increase in 

concentration below the cap layer   
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Loc 9: Defined Cap Layer 
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Cap Boundary Measurements provided by USEPA 



Loc 13: Highest Observed 
Concentration Levels (NAPL Present) 
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Loc 19: Surface Recontamination 
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Wyckoff/Eagle Harbor 

•  COCs: PAHs, PCP, organics, creosote, and heavy metals 
•  Remediation Activities: Capping and source control  
•  Monitoring Activities (2011): SPME porewater sampling and grab samples/

cores (USACE) 

Creosote pool  Wood treatment facility off of 
Bainbridge Island 



The effective organic carbon partition 
coefficient 

•  “Measured” Koc ~ 2x estimated 
Koc using literature values 
(Baker et. al, 2007) 

•  Deviation between measured and 
bulk-solid predictions of 
porewater concentrations are 
consistent with aged 
contaminants and strongly solid-
associated contaminants. 

 
 
 
 

 

•  Primary advantages of directly 
measuring porewater 
concentrations with SPME 
–  No assumption of 100% availability 
–  No dependence of theoretical 

estimate of Koc  

​𝐾↓𝑜𝑐 =(​​𝑊↓𝑠 /​𝐶↓𝑝𝑤 ​
𝑓↓𝑜𝑐  )	
  

Thomas et al., 2014 



Assessing PAH Bioavailability 
21-day bioaccumulation experiment using bivalve mytilida Musculista senhousia  and 

210/230 µm PDMS fiber 

Bulk solids (even carbon normalized)- a weaker indicator of 
bioaccumulation potential than porewater concentrations  

Lampert, 2010 



Key Points about SPME PDMS Profiling 

•  Porewater concentration 
▫  More sensitive indicator of migration in caps than bulk sediment 

concentration  
�  Sensitive indicator of in-situ mixing processes 

▫  Can also indicate performance of in-situ treatment 
▫  Correlates with contaminant availability and bioaccumulation 
•  Polymer sorbents 
▫  Effective measures of in-situ porewater concentrations  

�  No assumptions of ​𝐾↓𝑜𝑐 or 100% availability 
▫  Note- detection limits and time to equilibrium strong function of 

hydrophobicity 
�  Tracks bioaccumulation  

�  dominated by more highly hydrophobic compounds 
�  May not track narcosis  

�  dominated by lower hydrophobicity compounds 



Thank you, USACE & USEPA  
 Especially, Paul Schroeder, Karl Gustavson, 
 Marc Mills, Amy Mucha, and Heather  Williams 

Any Questions? 

 
Thank you for your attention! 
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